Regulating DNA translocation through functionalized soft nanopores.

نویسندگان

  • Li-Hsien Yeh
  • Mingkan Zhang
  • Shizhi Qian
  • Jyh-Ping Hsu
چکیده

Nanopores have emerged as promising next-generation devices for DNA sequencing technology. The two major challenges in such devices are: (i) find an efficient way to raise the DNA capture rate prior to funnelling a nanopore, and (ii) reduce the translocation velocity inside it so that single base resolution can be attained efficiently. To achieve these, a novel soft nanopore comprising a solid-state nanopore and a functionalized soft layer is proposed to regulate the DNA electrokinetic translocation. We show that, in addition to the presence of an electroosmotic flow (EOF), which reduces the DNA translocation velocity, counterion concentration polarization (CP) occurs near the entrance of the nanopore. The latter establishes an enrichment of the counterion concentration field, thereby electrostatically enhancing the capture rate. The dependence of the ionic current on the bulk salt concentration, the soft layer properties, and the length of the nanopore are investigated. We show that if the salt concentration is low, the ionic current depends largely upon the length of the nanopore, and the density of the fixed charge of the soft layer, but not upon its degree of softness. On the other hand, if it is high, ionic current blockade always occurs, regardless of the levels of the other parameters. The proposed soft nanopore is capable of enhancing the performance of DNA translocation while maintaining its basic signature of the ionic current at high salt concentration. The results gathered provide the necessary information for designing devices used in DNA sequencing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA translocation through single-layer boron nitride nanopores.

Ultra-thin nanopores have become promising biological sensors because of their outstanding signal-to-noise ratio and spatial resolution. Here, we show that boron nitride (BN), which is a new two-dimensional (2D) material similar to graphene, could be utilized for making a nanopore with an atomic thickness. Using an all-atom molecular dynamics simulation, we investigated the dynamics of DNA tran...

متن کامل

Quantized biopolymer translocation through nanopores: departure from simple scaling.

We discuss multiscale simulations of long biopolymer translocation through wide nanopores that can accommodate multiple polymer strands. The simulations provide clear evidence of folding quantization, namely the translocation proceeds through multifolded configurations characterized by a well-defined integer number of folds. As a consequence, the translocation time acquires a dependence on the ...

متن کامل

Regulating the Transport of DNA through Biofriendly Nanochannels in a Thin Solid Membrane

Channels formed by membrane proteins regulate the transport of water, ions or nutrients that are essential to cells' metabolism. Recent advances in nanotechnology allow us to fabricate solid-state nanopores for transporting and analyzing biomolecules. However, uncontrollable surface properties of a fabricated nanopore cause irregular transport of biomolecules, limiting potential biomimetic appl...

متن کامل

Solid-state nanopore channels with DNA selectivity.

Solid-state nanopores have emerged as possible candidates for next-generation DNA sequencing devices. In such a device, the DNA sequence would be determined by measuring how the forces on the DNA molecules, and also the ion currents through the nanopore, change as the molecules pass through the nanopore. Unlike their biological counterparts, solid-state nanopores have the advantage that they ca...

متن کامل

Slowing DNA translocation through a nanopore using a functionalized electrode.

Nanopores were fabricated with an integrated microscale Pd electrode coated with either a hydrogen-bonding or hydrophobic monolayer. Bare pores, or those coated with octanethiol, translocated single-stranded DNA with times of a few microseconds per base. Pores functionalized with 4(5)-(2-mercaptoethyl)-1H-imidazole-2-carboxamide slowed average translocation times, calculated as the duration of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 4 8  شماره 

صفحات  -

تاریخ انتشار 2012